skip to main content


Search for: All records

Creators/Authors contains: "Fan, Wai-Tong Louis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We consider a simple diploid population-genetic model with potentially high variability of offspring numbers among individuals. Specifically, against a backdrop of Wright–Fisher reproduction and no selection, there is an additional probability that a big family occurs, meaning that a pair of individuals has a number of offspring on the order of the population size. We study how the pedigree of the population generated under this model affects the ancestral genetic process of a sample of size two at a single autosomal locus without recombination. Our population model is of the type for which multiple-merger coalescent processes have been described. We prove that the conditional distribution of the pairwise coalescence time given the random pedigree converges to a limit law as the population size tends to infinity. This limit law may or may not be the usual exponential distribution of the Kingman coalescent, depending on the frequency of big families. But because it includes the number and times of big families, it differs from the usual multiple-merger coalescent models. The usual multiple-merger coalescent models are seen as describing the ancestral process marginal to, or averaging over, the pedigree. In the limiting ancestral process conditional on the pedigree, the intervals between big families can be modeled using the Kingman coalescent but each big family causes a discrete jump in the probability of coalescence. Analogous results should hold for larger samples and other population models. We illustrate these results with simulations and additional analysis, highlighting their implications for inference and understanding of multilocus data.

     
    more » « less
  2. Abstract

    Recurrent mutation produces multiple copies of the same allele which may be co-segregating in a population. Yet, most analyses of allele-frequency or site-frequency spectra assume that all observed copies of an allele trace back to a single mutation. We develop a sampling theory for the number of latent mutations in the ancestry of a rare variant, specifically a variant observed in relatively small count in a large sample. Our results follow from the statistical independence of low-count mutations, which we show to hold for the standard neutral coalescent or diffusion model of population genetics as well as for more general coalescent trees. For populations of constant size, these counts are distributed like the number of alleles in the Ewens sampling formula. We develop a Poisson sampling model for populations of varying size and illustrate it using new results for site-frequency spectra in an exponentially growing population. We apply our model to a large data set of human SNPs and use it to explain dramatic differences in site-frequency spectra across the range of mutation rates in the human genome.

     
    more » « less
  3. The Togashi Kaneko model (TK model) is a simple stochastic reaction network that displays discreteness-induced transitions between meta-stable patterns. Here we study a constrained Langevin approximation (CLA) of this model. This CLA, derived under the classical scaling, is an obliquely reflected diffusion process on the positive orthant and hence respects the constraint that chemical concentrations are never negative. We show that the CLA is a Feller process, is positive Harris recurrent and converges exponentially fast to the unique stationary distribution. We also characterize the stationary distribution and show that it has finite moments. In addition, we simulate both the TK model and its CLA in various dimensions. For example, we describe how the TK model switches between meta-stable patterns in dimension six. Our simulations suggest that, when the volume of the vessel in which all of the reactions that take place is large, the CLA is a good approximation of the TK model in terms of both the stationary distribution and the transition times between patterns.

     
    more » « less
  4. Abstract We consider the incompressible 3D Navier–Stokes equations subject to a shear induced by noisy movement of part of the boundary. The effect of the noise is quantified by upper bounds on the first two moments of the dissipation rate. The expected value estimate is consistent with the Kolmogorov dissipation law, recovering an upper bound as in (Doering and Constantin 1992 Phys. Rev. Lett. 69 1648) for the deterministic case. The movement of the boundary is given by an Ornstein–Uhlenbeck process; a potential for over-dissipation is noted if the Ornstein–Uhlenbeck process were replaced by the Wiener process. 
    more » « less
  5. null (Ed.)